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Abstract
Analyses of the oblique propagation of large amplitude electrostatic waves,
encountered in the literature, use as additional assumptions that the plasma
response is quasi-neutral and that there is no more than one inertial fluid
species, so that the result is either a second-order differential equation or a
Sagdeev-type energy integral. A careful discussion shows that, as electrostatic
modes require that plasma currents be weak, lest unwanted wave magnetic
effects are generated, the nonlinear amplitudes, at significant obliquity, have
to be small, or, for stronger nonlinearities, the obliquity must remain small.
Within the frame of the multispecies model assumptions, the description always
leads to a Sagdeev-type of integral, the derivation of which has been given in a
general and compact notation, to avoid all possibility of algebraic oversights.

PACS numbers: 52.27.Cm, 52.35.Fp, 52.35.Mw

1. Introduction

Oblique propagation of large amplitude electrostatic waves and structures has been studied
in plasma models where one [1–10] species can be described as fluid (cold [2, 3, 5, 7, 8]
or warm isothermal [1] or adiabatic [4, 6, 9, 10]), in the presence of one [2–5, 8] or more
[1, 6, 7, 9, 10] inertialess constituents. Some of the latter are Boltzmann distributed [1–7, 9, 10]
or have polytropic pressures [8]. Furthermore, sometimes beam species are included, which
are treated as highly magnetized, so that only their equation of motion parallel to the static
magnetic field needs to be considered [6, 9].

An unstated restriction of the models seems to be that there is no more than one inertial,
magnetized fluid species, for good reasons, as the algebra in section 3 will show. This is
because, contrary to what obtains for parallel propagation, at truly oblique propagation the
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equations of motion (per species) are not directly invertible nor integrable, so that the density
is not expressible in terms of the electrostatic potential and there are not enough constants of
the motion.

The analyses all use three essential assumptions: the waves are electrostatic, the plasma
response is quasi-neutral and the nonlinear structures assume a stationary form in a suitably
chosen co-moving frame. Provided there is no more than one fluid species, the resulting basic
equation is either a second-order differential equation of the form [5, 10]

a(ϕ)
d2ϕ

dx2
+ b(ϕ)

(
dϕ

dx

)2

+ c(ϕ) = 0 (1)

or a Sagdeev-type energy integral [1, 6, 9],

1

2

(
dϕ

dx

)2

+ S(ϕ) = 0, (2)

in terms of either the (normalized) electrostatic potential ϕ of the nonlinear wave or structure,
or, equivalently, of a density [2–4, 7] or velocity [8]. The co-moving coordinate is denoted
here for brevity x. Furthermore, a(ϕ), b(ϕ), c(ϕ) and S(ϕ) are complicated functions of ϕ

and the plasma compositional parameters, and it is not always obvious to verify on these
expressions whether (1) might be integrated to obtain (2) or not. Yet it remains intriguing that
two, apparently different, results might be obtained.

S(ϕ) is usually called the Sagdeev pseudopotential, traditionally obtained as a function
of ϕ, but it can equally well be expressed in another variable, such as a density [2–4, 7] or
velocity [8]. The nonlinear structures have the characteristic potential hump or dip profiles
of solitary waves [1–4, 6–9], unless they are driven by nonzero electric fields and show spiky
behavior [5, 8, 10].

It is explicitly not the aim of the present paper to add, based on the same methodological
assumptions, yet another plasma model to the existing literature, because the inherent
complexity of the Sagdeev pseudopotential or equivalent descriptions then needs a fully
numerical discussion, and these are often not physically illuminating. The papers quoted here
[1–10] are not meant to constitute an exhaustive list but serve to illustrate a variety of models
and physical problems.

Rather, precisely in view of the convoluted analytical treatment, when written out in full,
it is prudent to have a closer look at the validity of the approximations, in particular to establish
whether their joint application is self-consistent or what restrictions this might imply. This
will be addressed in section 2, whereas in section 3 it will be shown that, within the frame of
the model assumptions, the description always leads to a Sagdeev-type of integral, in other
words, that (1) can be integrated to obtain (2). This will be written in a general notation, so as
not to lose sight of the wood for the trees. Section 4 then briefly summarizes the conclusions.

2. Basic assumptions

Let us start from a multispecies plasma model with basic fluid equations of continuity and
motion per species with index s,

∂ns

∂t
+

∂

∂x
(nsvsx) = 0, (3)

∂vs

∂t
+ vsx

∂vs

∂x
+

1

nsms

∂ps

∂x
ex = qs

ms

(E + vs × B). (4)
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These have been written for propagation along the x-axis, and ns, ps, qs,ms and vs are the
species density, pressure, (signed) charge, mass and fluid velocity, the last one in vector form.
The electric field and magnetic induction are E and B, respectively, and the latter has a static
component B0, oriented for oblique propagation as B0 = B0(ex cos ϑ + ez sin ϑ), with ϑ being
the angle between the directions of wave propagation and static field. Inertialess plasma
constituents can easily be accommodated in this framework by taking the appropriate ms → 0
limit, plus possibly some other adaptations.

The first assumption, typical in the quest for large solitary modes, is that the nonlinear
structures assume a stationary form (∂/∂t = 0) in a suitably chosen co-moving frame. In
this frame the undisturbed plasma moves by at a velocity V along the x-axis, and hence the
equation of continuity (3) can be integrated to yield the conservation of (mass) flux,

nsvsx = ns0V. (5)

The boundary conditions for solitary structures are such that ns → ns0 and vsx → V , and later
also ps → ps0 and ϕ → 0, far away from the nonlinear disturbance. For the other velocity
components we will need vsy → 0 and vsz → 0.

On the other hand, the undisturbed form of the equations of motion (4) shows that we
need

E0 + V ex × B0 = 0, (6)

so that there is a constant electric field [8] E0y = V B0 sin ϑ .
Multiplying the stationary form of the equations of motion (4) by nsms or scalarly by

nsmsvs and summing over all plasma species gives, with the help of (5), that

V
∑

s

ns0ms

dvs

dx
+

∑
s

dps

dx
ex =

∑
s

nsqs E +
∑

s

nsqsvs × B, (7)

V
∑

s

ns0msvs · dvs

dx
+ V

∑
s

ns0

ns

dps

dx
=

∑
s

nsqsvs · E. (8)

Now the second essential assumption is brought in, namely the electrostatic approximation.
Strictly speaking, for that to hold there can be no wave magnetic effects and hence from
Ampère’s law no currents. As a parenthesis, when electrostatic modes are discussed in a
linearized description, this is deemed a valid approximation provided one is dealing with
small wavelengths, namely large wave numbers [11]. However, when a Sagdeev-type
pseudopotential treatment is given for large acoustic modes, one is, for their linear counterparts,
actually in the small wave number domain, but can now have potentially large modes. The
validity of the electrostatic description is therefore by no means obvious.

Combined with the other important hypothesis that there is quasi-neutrality, we have to
put ∑

s

nsqsvs � 0,
∑

s

nsqs � 0, (9)

and the rhs of (7) and (8) vanish (approximately). The lhs of (7) can then be integrated to give
global conservation of momentum, written in components as∑

s

ns0msV (vsx − V ) +
∑

s

(ps − ps0) � 0,

∑
s

ns0msvsy � 0,

∑
s

ns0msvsz � 0.

(10)
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Similarly, the integration of the lhs of (8) is formally possible, provided some pressure–density
relations exist per species, to be discussed in the following section. This yields

1

2

∑
ns0ms

(
v2

sx + v2
sy + v2

sz − V 2
)

+
∑

ns0

∫ ϕ

0

1

ns

dps

dns

dns

dϕ
dϕ′ � 0. (11)

As intimated already in section 1, more than one fluid species cannot be handled, because at
truly oblique propagation the equations of motion are not invertible, in the sense that the density
(per species) is not directly expressible in terms of the electrostatic potential. Therefore, if
there is only one fluid species (with subscript f and inertial effects) whereas all other species
are inertialess (ms = 0 for all s �= f ), (11) indicates that vfy � 0 � vf z.

Let us backtrack for a moment and not use the quasi-neutrality assumption, but still
consider electrostatic modes. In that case only the z component of (11) holds as written there.
Consequently, vf z � 0, but now the z component of (4) for the one fluid species tells us that
vfy � 0, unless the propagation is strictly perpendicular. The latter case needs a separate
discussion, which can be gleaned from the treatment in the following section by putting there
ϑ = π/2.

In general, therefore, it is the electrostatic assumption which puts the strongest restrictions
on the applicability of the model. Indeed, one of the other consequences for the one fluid
species is that the y component of (4) then yields

(V − vf x) sin ϑ � 0, (12)

based on the presence of E0y as defined in (6).
Consequently, if one adheres to the requirement that the currents are small for electrostatic

modes, lest they generate unwanted wave magnetic effects, (12) indicates that the nonlinear
amplitudes are weak, at serious obliquity, or for stronger nonlinearities the obliquity must
remain small. This is also seen from the x component of (4), which in the case of vfy � 0
amounts to determining vf x and nf as functions of ϕ, as if we were at (almost) parallel
propagation.

Unfortunately, these possible restrictions on the models quoted from the literature [1–10]
are seldom discussed, and it is customary to use the electrostatic and possibly the quasi-
neutrality approximations in plasma wave studies without further reference to Maxwell’s
equations and the restrictions they impose.

3. Reduction to a Sagdeev pseudopotential description

Supposing that we need not worry too much about the restrictions pointed out in the previous
section but may use the electrostatic and quasi-neutrality assumptions at face value, we can
prove that the description always leads, within this framework, to a Sagdeev-type of integral.

We now start from a model that contains one fluid species, meaning that for this species
(3) and (4) are needed in full, while for all other constituents the density can ultimately be
expressed in terms of the electrostatic potential. For inertialess species the main momentum
balance is between the pressure and ϕ, which is easily invertible, provided the pressure–density
relations are polytropic, in the sense that ps ∝ n

γs
s , with index γs . Other species, like highly

magnetized cold beams [9], are essentially treated as if the propagation were parallel. The
one fluid species will also be assumed to have a polytropic pressure–density relation. All
polytropic relations include isothermal (γs = 1) and adiabatic (γs = 3) pressure variations as
special cases.
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Invoking then quasi-neutrality means that one can express the density of the fluid
component of the plasma as

nf (ϕ) � − 1

qf

∑
s �=f

ns(ϕ)qs, (13)

as is done in some of the papers [5, 9, 10], unless there are only two species and the treatment
is using their common density [2–4] or velocity component along the propagation direction [8]
as the unknown variable. Yet another possibility is to use the density of one of the Boltzmann
species to replace ϕ [7]. These descriptions, of course, are fundamentally equivalent to what
is written in (13).

If one were to relax the quasi-neutrality assumption and use Poisson’s equation in full,

nf = − 1

qf

∑
s �=f

ns(ϕ)qs − ε0

qf

d2ϕ

dx2
, (14)

we note that nf is no longer a function of ϕ alone, but also depends on d2ϕ/dx2. This will
preclude some of the integrations needed to arrive at a single differential equation or at an
energy integral.

Even though the inertialess or beam density functions ns(ϕ) (s �= f ) might be
complicated, (13) means that we can know pf ∝ n

γf

f and, through (5), also vf x as functions
of ϕ. We will, for economy of notation, continue in the following in using nf as a shorthand
for the rhs of (13) and omit on this and related functions the explicit ϕ dependence, all in the
hope of avoiding getting lost in algebraic complications that obscure the line of reasoning.

Writing the components of the stationary form of (4) for the sole fluid component gives

vf x

dvf x

dx
+

1

nf mf

dpf

dx
+

qf

mf

dϕ

dx
= �f vfy sin ϑ, (15)

vf x

dvfy

dx
= �f [(V − vf x) sin ϑ + vf z cos ϑ], (16)

vf x

dvf z

dx
= −�f vfy cos ϑ, (17)

where we have introduced the (signed) gyrofrequency �f = qf B0/mf . Before going on, we
note that for parallel propagation (ϑ = 0) (15) becomes decoupled from (16) and (17), and the
latter then can be combined to give vfy = vf z = 0. For perpendicular propagation (ϑ = π/2)

it is (17) which is decoupled, leading to vf z = 0, and (15) and (16) can be combined as
explained below for the general case, by simply substituting ϑ = π/2 in the relevant steps.

Elimination of vfy between (15) and (17) gives, after multiplication by nf , that

dvf x

dx
cos ϑ +

dvf z

dx
sin ϑ +

1

nf 0mf V

dpf

dx
cos ϑ +

qf

nf 0mf V
nf

dϕ

dx
cos ϑ = 0. (18)

This can be integrated to

(vf x − V ) cos ϑ + vf z sin ϑ +
c2
tf cos ϑ

γf V

[(
nf

nf 0

)γf

− 1

]
+

qf cos ϑ

nf 0mf V

∫ ϕ

0
nf dϕ′ = 0, (19)

where the thermal velocity ctf of the fluid species is defined through c2
tf = γf pf 0/nf 0mf .

Other boundary conditions can easily be accommodated in this and subsequent integrations
and do not detract from the general line of thought.
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Using (5) to express vf x in terms of nf , and the polytropic relation pf ∝ n
γf

f together
with the definition of ctf allows a rewrite of the lhs of (15), for brevity, as

vf x

dvf x

dx
+

1

nf mf

dpf

dx
+

qf

mf

dϕ

dx
= F

dϕ

dx
, (20)

where

F =
[
c2
tf

(
nf

nf 0

)γf −2

− V 2

(
nf 0

nf

)3
]

d

dϕ

(
nf

nf 0

)
+

qf

mf

(21)

is, through nf , also a function of ϕ. Note that (20) could equally well be written as

F
dϕ

dx
= d

dx

[
c2
tf

γf − 1

(
nf

nf 0

)γf −1

+
V 2

2

(
nf 0

nf

)2

+
qf

mf

ϕ

]
, (22)

but ultimately the algebra is equivalent to that given below. All this allows us to recast the
derivative of (15) as

d

dx

(
F

dϕ

dx

)
= �f

dvfy

dx
sin ϑ. (23)

With the help of (16) this gives

vf x

d

dx

(
F

dϕ

dx

)
= �2

f [(V − vf x) sin ϑ + vf z cos ϑ] sin ϑ. (24)

It is now possible to eliminate vf z between this equation and (19) to obtain

d

dx

(
F

dϕ

dx

)
+ G = 0, (25)

in terms of a new function G with a more complicated ϕ dependence,

G = �2
f nf cos2 ϑ

nf 0V 2

{
c2
tf

γf

[(
nf

nf 0

)γf

− 1

]
+

qf

mf

∫ ϕ

0

nf

nf 0
dϕ′

}
+ �2

f

(
1 − nf

nf 0

)
. (26)

After multiplying (25) by Fdϕ/dx the resulting expression can easily be integrated and a
Sagdeev-type energy integral (2) obtains, with

S(ϕ) = 1

F(ϕ)2

∫ ϕ

0
F(ϕ′)G(ϕ′) dϕ′, (27)

where the ϕ dependence has been restored. On the other hand, when (25) is worked out, we
get

F(ϕ)
d2ϕ

dx2
+

dF(ϕ)

dϕ

(
dϕ

dx

)2

+ G(ϕ) = 0, (28)

showing that the link between (1) and (2) implies that

F(ϕ)

a(ϕ)
= dF(ϕ)/dϕ

b(ϕ)
= G(ϕ)

c(ϕ)
= ρ(ϕ). (29)

Here ρ(ϕ) is a possible integrating factor, and (29) leads to a relation between a(ϕ) and b(ϕ),
involving ρ(ϕ),

b(ϕ) = da(ϕ)

dϕ
+ a(ϕ)

d ln ρ(ϕ)

dϕ
. (30)

The steps leading to (30) are basically very simple: eliminate vfy between (15) and (17) to
obtain (19), define F as in (21) and take the derivative of (15) to arrive at (25), and hence (28),

6
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by eliminating vf z between (19) and (24). This reasoning is generic and does not depend on
the explicit expressions of F(ϕ) and G(ϕ).

Although (30) has not been mentioned nor used in the papers [5, 10] having (1) as the
starting point for their discussions, it is obeyed in the paper by Reddy et al [5] without the need
for an integrating factor (ρ = 1). In the paper by Maharaj et al [10], the integrating factor
essentially corresponds to (13) for the (fluid) dust component of the plasma (ρ ∝ nf ), up to
changes of notation and normalization. Missing the integrating factor is easy in complicated
derivations of the sort, if all intermediate details are written out in full and expressions get
unwieldy.

4. Conclusions

Analyses of the oblique propagation of large amplitude electrostatic waves, as encountered
in the literature, use three essential assumptions, that the waves are electrostatic, the plasma
response is quasi-neutral and the nonlinear structures assume a stationary form in a co-moving
frame. Consequently, the resulting basic equation is either a second-order differential equation
or a Sagdeev-type energy integral.

In this paper, rather than working out a detailed model, the joint validity of the
approximations has been investigated, to establish whether they are self-consistent and what
restrictions are implied. The existence of electrostatic modes requires that plasma currents
be sufficiently weak, lest they generate wave magnetic effects. It then follows that either, at
significantly oblique propagation, the nonlinearities are weak, or for stronger nonlinearities,
the angle of propagation to the magnetic field must remain relatively small.

Next, it has been shown that, within the frame of the model assumptions, the description
always leads to a Sagdeev-type of integral. However, the methods only work provided there
is no more than one inertial fluid species, otherwise the set of equations cannot be reduced to
one single equation. The discussion has been given in as compact a notation as possible, to
clearly bring out the line of thought and to avoid algebraic oversights.

It is hoped that future work will keep the basic restrictions on amplitudes and obliquity
in mind, specially when discussing large-scale astrophysical applications.
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